Abstract
The syntheses of 7-deaza-7-fluoro-2′-deoxyadenosine (1a ), 7-deaza-7-fluoro- 2′-deoxyinosine (3a ) and 7-deaza-7-fluoro-2′-deoxyguanosine (3c ) as well as of the 2′-deoxy-2′-fluoroarabinofuranosyl derivatives 1b , 3b are described. Starting materials were 6-chloro-7-fluoro-7-deazapurine (4-chloro-5-fluoropyrrolo[2,3-d ]pyrimidine, 4b ) and 2-pivaloylamino-6-chloro-7-fluoro-7-deazapurine (2-pivaloylamino-4-chloro-5-fluoropyrrolo[2,3-d ]pyrimidine, 6 ). Nucleobase anion glycosylation of 4b or 6 with the halogenoses 7 or 9 furnished the protected β-d -nucleosides 8 , 10 and 11 , which were converted to compounds 1a , 1b by ammonolysis and to 2a -c by sodium methoxide treatment. The 2′-deoxyinosine derivatives 3a , 3b and the guanosine analogue 3c were obtained from 2a -c . Conformational analysis of the nucleosides 1a , 1b was performed in solution and in the solid state. Single-crystal X-ray analyses showed
that the sugar moiety of 1a exhibits the S- conformation (P = 164.8°, τ = 40.1°). In solution the 2′-fluoro substituents shift
the sugar conformation slightly towards N .
Key words
fluorine - glycosylations - pyrrolo[2,3-d ]pyrimidines - nucleosides - sugar conformation
References
<A NAME="RT00806SS-1">1 </A>
Wang X.
Seth PP.
Ranken R.
Swayze EE.
Migawa MT.
Nucleosides, Nucleotides Nucleic Acids
2004,
23:
161
<A NAME="RT00806SS-2">2 </A>
Hinshaw BC.
Gerster JF.
Robins RK.
Townsend LB.
J. Heterocycl. Chem.
1969,
6:
215
<A NAME="RT00806SS-3">3 </A>
Cook AF.
Holman MJ.
Nucleosides Nucleotides
1984,
3:
401
<A NAME="RT00806SS-4">4 </A>
Henderson JF.
Paterson ARP.
Caldwell IC.
Paul B.
Chan MC.
Lau KF.
Cancer Chemother. Rep. 2
1972,
3:
71
<A NAME="RT00806SS-5">5 </A>
Bhattacharya BK.
Rao TS.
Revankar GR.
J. Chem. Soc., Perkin Trans. 1
1995,
1543
<A NAME="RT00806SS-6">6 </A>
Bhattacharya BK.
Ojwang JO.
Rando RF.
Huffman JH.
Revankar GR.
J. Med. Chem.
1995,
38:
3957
<A NAME="RT00806SS-7">7 </A>
Ojwang JO.
Bhattacharya BK.
Marshall HB.
Korba BE.
Revankar GR.
Rando RF.
Antimicrob. Agents Chemother.
1995,
39:
2570
<A NAME="RT00806SS-8">8 </A>
Seela F.
Thomas H.
Helv. Chim. Acta
1995,
78:
94
<A NAME="RT00806SS-9">9 </A>
Ramzaeva N.
Seela F.
Helv. Chim. Acta
1996,
79:
1549
<A NAME="RT00806SS-10">10 </A>
Seela F.
Zulauf M.
Chem. Eur. J.
1998,
4:
1781
<A NAME="RT00806SS-11">11 </A>
Balow G.
Mohan V.
Lesnik EA.
Johnston JF.
Monia BP.
Acevedo OL.
Nucleic Acids Res.
1998,
26:
3350
<A NAME="RT00806SS-12">12 </A>
Bondi A.
J. Phys. Chem.
1964,
68:
441
<A NAME="RT00806SS-13">13 </A>
Bergstrom DE.
Brattesani AJ.
Nucleic Acids Res.
1980,
8:
6213
<A NAME="RT00806SS-14">14 </A>
Seela F.
Peng X.
Synthesis
2004,
1203
<A NAME="RT00806SS-15">15 </A>
Erian AW.
J. Heterocycl. Chem.
2001,
38:
793
<A NAME="RT00806SS-16">16 </A>
Nyffeler PT.
Duron SG.
Burkart MD.
Vincent SP.
Wong C.-H.
Angew. Chem. Int. Ed.
2005,
44:
192
<A NAME="RT00806SS-17">17 </A>
Winkeler H.-D.
Seela F.
J. Org. Chem.
1983,
48:
3119
<A NAME="RT00806SS-18">18 </A>
Seela F.
Westermann B.
Bindig U.
J. Chem. Soc., Perkin Trans. 1
1988,
697
<A NAME="RT00806SS-19">19 </A>
Hoffer M.
Chem. Ber.
1960,
93:
2777
<A NAME="RT00806SS-20">20 </A>
Howell HG.
Brodfuehrer PR.
Brundidge SP.
Benigni DA.
Sapino C.
J. Org. Chem.
1988,
53:
85
<A NAME="RT00806SS-21">21 </A>
Gudmundsson KS.
Freeman GA.
Drach JC.
Townsend LB.
J. Med. Chem.
2000,
43:
2473
<A NAME="RT00806SS-22">22 </A>
Tann CH.
Brodfuehrer PR.
Brundidge SP.
Sapino C.
Howell HG.
J. Org. Chem.
1985,
50:
3644
<A NAME="RT00806SS-23">23 </A>
Taylor EC.
Kuhnt D.
Shih C.
Rinzel SM.
Grindey GB.
Barredo J.
Jannatipour M.
Moran RG.
J. Med. Chem.
1992,
35:
4450
<A NAME="RT00806SS-24">24 </A>
Barnett CJ.
Kobierski ME.
J. Heterocycl. Chem.
1994,
31:
1181
<A NAME="RT00806SS-25">25 </A>
Revankar GR.
Rao TS.
Ramasamy K.
Smee DF.
Nucleosides Nucleotides
1995,
14:
671
<A NAME="RT00806SS-26">26 </A>
Seela F.
Thomas H.
Helv. Chim. Acta
1994,
77:
897
<A NAME="RT00806SS-27">27 </A>
Seela F.
Zulauf M.
Synthesis
1996,
726
<A NAME="RT00806SS-28">28 </A>
Thomas H.
Ph.D. Thesis
University of Osnabrück;
Osnabrück:
1995.
<A NAME="RT00806SS-29">29 </A>
Breitmaier E.
Voelter W. In
13 C NMR Spectroscopy Monographs in Modern Chemistry
2nd ed., Vol. 5:
Ebel HF.
Verlag Chemie;
Weinheim:
1978.
p.201
<A NAME="RT00806SS-30">30 </A>
Albert A.
Serjeant EP.
The Determination of Ionization Constants
Chapman & Hall Ltd;
London:
1971.
p.44
<A NAME="RT00806SS-31">31 </A>
Plavec J.
Thibaudeau C.
Chattopadhyaya J.
Pure Appl. Chem.
1996,
68:
2137
<A NAME="RT00806SS-32">32 </A>
Van Wijk L.
Haasnoot CAG.
De Leeuw FAAM.
Huckriede BD.
Westra Hoekzema AJA.
Altona C.
PSEUROT 6.3
Leiden Institute of Chemistry, Leiden University;
Leiden:
1999.
<A NAME="RT00806SS-33">33 </A>
Thibaudeau C.
Plavec J.
Chattopadhyaya J.
J. Org. Chem.
1998,
63:
4967
<A NAME="RT00806SS-34">34 </A>
Rosemeyer H.
Zulauf M.
Ramzaeva N.
Becher G.
Feiling E.
Mühlegger K.
Münster I.
Lohmann A.
Seela F.
Nucleosides Nucleotides
1997,
16:
821
<A NAME="RT00806SS-35">35 </A>
Peng X.
Seela F.
Org. Biomol. Chem.
2004,
2:
2838
<A NAME="RT00806SS-36">36 </A>
He J.
Mikhailopulo I.
Seela F.
J. Org. Chem.
2003,
68:
5519
<A NAME="RT00806SS-37">37 </A>
Seela F.
Xu K.
Eickmeier H.
Acta Cryst.
2005,
C61:
o408